翻訳と辞書 |
Remarkable cardinal : ウィキペディア英語版 | Remarkable cardinal In mathematics, a remarkable cardinal is a certain kind of large cardinal number. A cardinal κ is called remarkable if for all regular cardinals θ > κ, there exist π, ''M'', λ, σ, ''N'' and ρ such that # π : ''M'' → Hθ is an elementary embedding # ''M'' is countable and transitive # π(λ) = κ # σ : ''M'' → ''N'' is an elementary embedding with critical point λ # ''N'' is countable and transitive # ρ = ''M'' ∩ Ord is a regular cardinal in ''N'' # σ(λ) > ρ # ''M'' = ''H''ρ''N'', i.e., ''M'' ∈ ''N'' and ''N'' ⊨ "''M is the set of all sets that are hereditarily smaller than ρ''" ==See also==
*Hereditarily countable set
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Remarkable cardinal」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|